# Thoughts on Verification at ISI Timescales

#### Barbara Brown

Joint Numerical Testbed Program
National Center for Atmospheric Research
Boulder CO

**ESPC & NUOPC Workshop** 

on

Construction, Visualization and Verification of Ensemble-based Predictions from Sub-seasonal to ISI Timescales

#### Seamless verification

Seamless forecasts consistent across space/time scales single modelling system or blended likely to be probabilistic / ensemble climate seasonal global prediction prediction change seasonal Spatial scale NWP prediction very regional short range local nowcasts point minutes hours weeks months decades days years forecast aggregation time



# "Seamless verification" – consistent across space/time scales

- Modelling perspective is my model doing the right thing?
  - Process approaches
  - LES-style verification of NWP runs (first few hours)
  - T-AMIP style verification of coupled / climate runs (first few days)
  - Single column model
- Statistical approaches
  - Spatial and temporal spectra
  - Spread-skill
  - Marginal distributions (histograms, etc.)



## "Seamless verification" – consistent across space/time scales

- User perspective can I use this forecast to help me make a better decision?
  - Neighborhood approaches spatial and temporal scales with useful skill
  - Object-based approaches what are the errors in attributes that matter (e.g., spatial displacements)
  - Generalized discrimination score (Mason & Weigel, MWR 2009)
    - consistent treatment of binary, multi-category, continuous, probabilistic forecasts
  - Calibration accounting for space-time dependence of bias and accuracy?
  - Conditional verification based on larger scale regime
  - Extreme Forecast Index (EFI) approach for extremes

#### ANALYSIS 80'E 40°E 30°N 20°N 10°N 40°E FORECAST 06-06-2013: DAY 5-11 40°E 30°N 20°N 10°N FORECAST 23-05-2013: DAY 19-25 40°E 30"N 20°N 10°N

#### Analysis and ECMWF EPS-Monthly Forecasting System Precipitation anomaly

Verification period: 10-06-2013/TO/16-06-2013

ensemble size = 51 ,climate size = 100 Shaded areas significant at 10% level Contours at 1% level



### But is seamless verification practical?

- Observation and sample size limitations increase with increasing forecast length
  - Greater aggregation => reduced specificity
- Users make different kinds of decisions on different time scales
  - Problems are different on different time scales
  - Consequences of decisions change
  - Is it practical to think we can use the same approaches for evaluation?



### Weather predictions

- Smaller scale grids and more frequent forecasts
  - Possible to examine forecasts on local scales (e.g., point verification) and short time scales
  - Possible to link forecast performance to environmental conditions (i.e., stratification)
- Small errors or variations in errors can be important
- Possible to establish statistical significance





### Seasonal predictions

- Typical verification approaches examine "success" of 3-category predictions through standard verification approaches
- May use a gridded approach
- Less opportunity to subset results
- Difficult to do extensive forecast evaluation without hindcasts





Brier Skill Score Hindcast (1959-2001) evaluation; 1-mo precip forecast (from DEMETER)

# Climate metrics: Interannual to Decadal and longer

- Typically larger gridded regions, standard metrics (e.g., correlation)
- Hindcasts are the focus... Difficult (or impossible) to evaluate actual projections



## Climate Model Intercomparisons





### Summary comments

- The options for evaluation of forecasts at ISI time scales are limited by
  - Event frequencies (sample sizes)
  - Spatial and temporal correlations
- Evaluation approaches should be defined by user applications which depend strongly on spatial and temporal scale
- Unique but overlapping verification approaches are required for crossing scales

#### Summary comments cont.

- Even with small sample sizes longer-range forecasts are amenable to application of new or alternative verification approaches
  - Spatial methods (can be applied to single pairs of images)
  - Extreme dependency scores may give more information about performance for extremes
  - User-relevant metrics



### Things to think about

- What are the most meaningful metrics for different spatial and temporal scales?
- How can we provide representative information that represents the needs of a relevant range of users?

(Ignorance score?)

 How do we balance the needs for information with the smaller sample sizes available at longer lead times?

## WMO Sub-seasonal to Seasonal (S2S) Project

- Under WMO World Weather Research Project (WWRP)
- Focus: Improve S2S predictions
  - Sharing operational forecasts and observations
  - Examining in detail specific extreme events
- Verification
  - Establishment of recommended metrics on S2S time scale
    - More specificity than Seasonal or Climate time scales
    - Less specificity than Weather time scale
- Workshop at NCEP in Feb 2014